Homework 2 Solutions 2024-2025

The Chinese University of Hong Kong Department of Mathematics MMAT 5340 Probability and Stochastic Analysis Prepared by Tianxu Lan Please send corrections, if any, to 1155184513@link.cuhk.edu.hk

January 21, 2025

1.

Let X and Y be two random variables with the same discrete uniform distributions, i.e., their probability mass functions are given by

$$P(X = k) = P(Y = k) = \frac{1}{N}, \quad k \in \{1, 2, \dots, N\}.$$

Suppose that X and Y are independent. Compute E[X + Y|X].

Hint: You may want to recall the elementary formula

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$

Solution. We have

$$E[Y] = \sum_{k=1}^{N} k \cdot P(Y=k) = \frac{1}{N} \sum_{k=1}^{N} k = \frac{N+1}{2}.$$

Thus,

$$E[X+Y|X] = E[X|X] + E[Y|X] = X + E[Y] = X + \frac{N+1}{2}.$$

2.

Suppose that X and Y are independent random variables, both with the standard normal distribution, i.e., $X, Y \sim N(0, 1)$. For $\rho \in [-1, 1]$, define

$$Z := \sqrt{1 - \rho^2 X + \rho Y}.$$

Show that $E[Z|Y] = \rho Y$. Solution.

 $E[Z|Y] = E\left[\sqrt{1-\rho^2}X + \rho Y|Y\right] = \sqrt{1-\rho^2}E[X|Y] + \rho E[Y|Y] = \sqrt{1-\rho^2}E[X] + \rho Y = \rho Y.$

Fix a probability space (Ω, \mathcal{F}, P) . Let X and Y be two independent continuous random variables with joint density function $\rho_{X,Y}(x,y)$ and the marginal density functions are denoted by $\rho_X(x)$ and $\rho_Y(y)$. Let g(X,Y) be a function with $E[|g(X,Y)|] < \infty$ and we define

$$f(y) := E[g(X, y)].$$

Show that

$$E[g(X,Y)|Y] = f(Y).$$

Hint: Use Fubini's theorem; also, the proof of Example 1.16 (ii) in the lecture notes may be helpful.

Solution. We shall show that f(Y) satisfies all the criteria listed in the definition of conditional expectation.

(a) It is clear that f(Y) is $\sigma(Y)$ -measurable.

.

(b) f(Y) is integrable:

$$E[|f(Y)|] = \int |f(y)|\rho_Y(y)dy \quad \text{by definition of expectation}$$
$$= \int \left(\int g(x,y)\rho_X(x)dx\right)\rho_Y(y)dy \quad \text{by definition of } f(y)$$
$$\leq \int \left(\int |g(x,y)|\rho_X(x)dx\right)\rho_Y(y)dy \quad \text{since } \int \cdots | \leq \int \cdots |$$
$$= \int \int |g(x,y)|\rho_X(x)\rho_Y(y)dxdy \quad \text{by Fubini's theorem}$$
$$= \int \int |g(x,y)|\rho_{X,Y}(x,y)dxdy \quad \text{by independence of } X \text{ and } Y$$
$$= E[|g(X,Y)|] \quad \text{by definition of expectation}$$
$$< \infty \quad \text{by the hypothesis}$$

(c) We need to establish that for all $\sigma(Y)$ -measurable bounded random variable Z, we must have E[g(X, Y)Z] = E[f(Y)Z].

Indeed, since Z is $\sigma(Y)$ -measurable, there exists some measurable function h such that Z = h(Y). It then follows that

$$E[g(X,Y)Z] = E[g(X,Y)h(Y)] = \int \int g(x,y)h(y)\rho_{X,Y}(x,y)dxdy.$$

By independence,

$$= \int \left(\int g(x,y)\rho_X(x)dx \right) h(y)\rho_Y(y)dy = \int f(y)h(y)\rho_Y(y)dy = E[f(Y)h(Y)] = E[f(Y)Z].$$